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In attempts to give an evolutionary explanation for the resonances in the sys- 

tern of Saturn’s satellites one model problem has been examined [ 1, 23 on evo- 
lution in a Hamiltonian system with one degree of freedom and with a Hamil- 
tonian depending explicitly on “slow time” 6 t. During the evolution a point on 
the phase planeintersects a separatrix of the unperturbed problem and it becomes 

impossible to give a deterministic 
description of the motion as 6 -+ 0. 

In the paper we discuss various con- 

cepts of probability and obtain for- 
mulas for an effective computation 
of this probability. We propose and 

substantiate a scheme for analyzing 
the problem by the averaging me- 

thod allowing us to examine the 
Fig. 1 point’s motion as it passes through 

the separatrix. Analogously we ex- 
amine the problem of the evolution of a pendulum’s motion with a slowly-vary- 

ing frequency and a small external moment. Certain aspects of the problem of 

studying the behavior of a dynamic system as it passes through a separatrix of 

the unperturbed problem were examined in [3- 51, We clarify the main problem 
of the present paper by example of the perturbed motion of a mathematical pen- 
dulum, which is described by the equation 

0” + a2 sin 0 = --L (9.1) 

We assume that the external moment L is independent of time and satisfies the 

conditions L > 0, L = 0 (h), while the frequency o grows slowly with time : 
O’ = 0 (6). where 6 is a sufficiently small quantity. Regions of direct rotation 

(6’ > 0), of reverse rotation (6’ < 0) and of oscillatory motion, separated by a 
separatrix, occur on the phase plane of the unperturbed problem (L = o’ = 0) 
(Fig. 1). Two outcomes of evolution are possible, in general, for problem (0.1) 

of a pendulum initially moving in the direct rotation after a time of the order 
of i / 6 it can shift into the reverse rotation or it can pass into the oscillatory 
mode. It can be shown that as 6 - 0 the type of the final motion can be chan- 
ged, for example, by a variation of the initial data by a quantity of the order of 
6. This is connected with the effects of the pendulum’s motion when passing a 
neighborhood of an osculating separatrix. A deterministic description of such a 
problem as 6 - 0 is meaningless. We can speak only of the probability of this 
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outcome or the other. In such problems there arise questions on the correct de- 
finition of probability and on the obtaining of an effective method of computing 

it, on the modification and substantiation of the applicability of the averaging 

method (with due regard to the probability arising here) for describing the solu- 

tions intersecting the separatrix, The thing is that the averaging method for des- 
cribing evolutions on times of the order of 1 / 6 has been justified and is applied 

usually only under the condition that the moving point is at a distance from the 

separatrix of the unperturbed problem. Whereas one of the peculiarities of the 

problems being considered here is the special interest in motion close to a sepa- 

ratrix. 

1. On I model problrm. Attempts to give an evolutionary explanantion of 
the resonance relations observable in the system of Saturn’s satellites lead to the exami- 

nation of a model problem (1, 21 defined by the Hamiltonian 

F = 4P - 23Lr + p -fP cos cp 

Here I? > 0 and cp are adjoint canonic variables 

(1.1) 

I”=dF/i3q1, cp’= - L+F/tW (1.2) 

p > 0 is a constant parameter, h is a time function whose rate of change 3L’ = 6 
is assumed constant, positive and small: 0 < 6 < 1 , Together with I? and cp ‘it is 
convenient to use the canonic variables x and y in which the Hamiltanian F has the 

form 
F = P (z, y, A) = (z” + y2)* - h (z2 + y”) + pz (1.3) 

(5 = v/2r cos cp, 9 = VZF sin cp) 

If we choose x and y as rectangular coordinates on a phase plane, then e = 1/% and 
cp are the polar coordinates. 

Fig, 2 

2. Phrrs trrjectorirc of thr unperturbed problem. Since 6 < 1, 
as a preliminary we consider the problem with a fixed 3L Cl]. The behavior of the tra- 
jectories in the zy-plane as a function of the value of k is shown in Fig. 2, a, b, c. For 
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h < A* = 1,s p*ja (A, is the singular “critical” value of h) a singular point A of 

center type exists in the Q/-plane (Fig, 2, a) and all trajectories surround this point. For 
h > h, (Fig, 2, c) the zy -plane fs divided into three regions by separaoices E1 and Es : 

&, G12, &.A singular point A of center type is contained inside the region G,, , while 
a singular point B of center type is contained within region Ga . Both separatricesstart 

and end at a singular point C of saddle typ. Figure 2, b shows the intermediate case 
of h = 3L*. 

Point C has the coordinates (XC, a), where 3;~ = 5~ (A) is the largest root of the 
equilibrium equation 

3F (z, 0, h) / dJ: = 42s - 2hx + p = 0 (2.1) 

when k 3 h, we Wmduce PC = Fc (a) = F(zc, 0, J,) , the value of Hamilton- 
ian F at point C , and the function H (5, y, h) = F (2, y, I+) - Fc (h). Region 

G,, is given by the relation .@ < 0 and regions GI and G, by the relation IT > 0. 
On the separatrices H = 0. 

3, Qualttatfve daraription of tha motfon, We return to the problem 
with h’ = 6 > 0. When ?L > h, , using (2.1) we once again inwoduce C , the singu- 
lar point of the Hamiltonian, and in accordance with the equation H = 0 we introduce 
the curves IX and 1a for which we retain the name separawices, The separatrices divide 
the phase plane into regions G,, Gzz, G,. Let G be the region included inside II. At 

times of the order of 1 / 6 (the variation of h is of the order of unity) there take place 
both a significant evolution of the motion as well as a deformation of the subdivision 
regions. As a result this point can intersect a sepasatrix and, having left one region, pass 
by its own evolution into another. Et is precisely such a capture process we shall consider. 

Let us state a number of assertions relative to the behavior of the solutions of the prob- 

lem being analyzed, which have an asymptotic sense, i. e. are fulfilled for sufficiently 

small 6. We do not present the proofs of these assertions here because of their awkward- 
ness ; the text following the assertion is for explaining its meaning and the idea of the 

proof. BY (x VL Y VI) we denote a point in the phase plane, moving in accordance 
with (1.2). Without loss of generality we can assume that 3i = ?L, at the initial instant 

t = 0 , Here the initial point (z (O), y (0)) can be found either inside iI (then 

.I3a = H (x (0), y (o), k,) < 0) or outside E1 (then H, > 0). 
Assertion 1. For any h: > h, there exist positive constants 6,, k, such that if 

6 ( 6, and w,< -II$“‘~, then (5 (t), y (E))E$a at least as long as x ( k. 
Thus, points lying inside L when h = h, (Fig. 2, b), excepting, possibly, the points 

from a narrow belt adjacent to k delineated by the condition - JC@ < H, < 0, 

remain in ~1~ at least for times of the order of 1 I 6. 
Note. The assertion that points occurring inside It when h = h, remain in Glt was 

made in [l] wherein this case was called an “automatic capture”. However, this asser- 
tion was not argued in any way in [I J. 

Assertion 2, If H, $ 0, an instant C, exists at which the point hits upon I,; 

for t > tr the point is found in region G , For sufficiently small 8 the instant t, 
can be estimated as fI < b / 6, where Zc, > 0 is a constant depending upon the ini- 

tial conditions, If, in addition, H, > k,6, where kg > 0 is a constant. then fort > 0 
the point once for the last time bits onto the ray cx before passing on into G. 

To prove this we differentiate H relative to the equations of motion. We obtain 
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H’ = ifjaH]dh= 6(dF/ah-d&idh) 

~=(~)c+(~)c~=(~)c 
H’ = 6 [a~ i ah - (aF ! d3L)C 1 = - & te2 - ec2) 

((w-/ ax), = 0 since c is a singular point of F). 
Lemma. The circle e = ec (with the exception of point C) lies in region G,, 

(this circle is shown in dotted line in Fig.2, c). 
Corollary. e > ec is fulfilled in Gl and on It ; e < ec is fulfilled in Gs and 

on Is. 
Therefore, H becomes equal to zero in Gl along the motion H’ < 0 and for some 

t = tr ( ,%a I 6 (see Sect. 7)‘ i. e. the point goes onto II. The point is in G for t > 
t;l . Since the quantity cp’ does not vanish in Gl , the point approaches Zl along a spiral 
When H, > k,6 the point is automatically able to make a Complete turn in Cr. The value 
of H at the intersection of ray CS by the last turn before going into G has been de- 
termined for such points. 

Theorem 1. Suppose that for some h = A > h, the point is located on ray CX, 
Then for sufficiently small 6 (6 ( 6,, 6, > 0 depends on A) we can find a: > 
a, ’ > a; > a, ’ > a,” > 0 such that 

1) If at this instant H E d = (a/, co), the point makes a complete turn in G, 
and goes onto CX. 

2) If H E dl = (0, a, ), intersects Zr, not going onto Cx any more ; here, 
(2a) if I$ E d2 = (&‘, a,‘), the point, not having reached the semicircle e = eo, 
y < 0 goes onto Is and is subsequently found in Gs ; (2b) if iFi E d,, = (a,“, 
a&), the point goes onto the semicircle e = ec, TV ( 0 , and for a suf~ciently small 
6, = 6, (‘1, k) remains ln its subsequent motion in G,, at least as long as & ( k 
for any k > A . 

3) When starting from any of the intervals d, d,, 4, d,, the point goes onto 
the corresponding line (ray Cx, li, 2, or {e = ec; y < 0) for h < A+ k,6 1 In 6 I, 
k, > 0 is a constant). 

4) The estimates 

ai’ - a, i = %Fr - a,’ = k,j%, a; = ,&Jj~ (3. I) 

(a,’ + al”) I 2 = 61, (A), (a,’ + a/) I 2 = M,, (A) 

(3.2) 

are valid for ai’, a?. Here k, and ka are positive constants and the integrals in (3.2) 
are taken over the separatrices of the unperturbed problem. All the constants (8, and ki) 
can be chosen independent of h satisfying the inequality h,(y < II <k for arbitrary 
y and k. 

Theorem 1 shows that points starting from the interval d make a further turn in ct, 
from interval 4 are captured in Gp, from interval dls are captured in GIS. The segments 

[O, as”], IQ*‘, os’l, ia', al'1 (3.3) 
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“omitted” here have a common length 0 (6”$ while the whole interval (0, alH) has a 
length 0 (8). The technique of proof of Theorem 1 is based on estimates of the integ- 
rals along ~determinate curves close to the separaaices, using the integrals in (3-2) 
along the separatrices of the unperturbed problem. Suppose that the point starts to move 
when h = A from the ray CX, having H = H (A) = 0 (6). For A f h < Al this point 
describes a curve 21’ close to b and either once again goes onto cx or intersects ~1 
and goes onto the semicircle e = ec, y > 0. I-Iere 

Ii (Al) = H (A) + 8 
s( 

aH \ dt I: i-l (A) - 61~ (A) + 0 (@“) 
al,] 

11’ 
If W (A) E d, then H (Al) > 0 and, hence, for h = AI the point lies in Gl, i.e. makes 
a complete turn. If W (A) E di, then H (A ) I < 0, i.e. for I = A1 the point lies in G~z. 
In this case, for Al f A < Aa the point describes a curve close to Z~ and H (A,) = 

H (A) - 6 111(A) - I, (A)] + 0 @I”‘“). If II (A) E 4, then N (A,) > CI and the point 
falls into Gs and remail there. If H (A) 6~ disz, then H (AZ) < 0 and for h = A, the 
point lies on the semicircle e = e c, y < O* The integrals in (3.2) areimproper (motion 
along a separatrix requires infinite time), but converge. They can be computed, 

Lemma, 
11 (J.) = (23t - 0) I 2, I, (A) = 6 / 2 (3.4) 

0 = arc cos [(h / 2~“) - 21 

Were 8 is the angle formed by the tangents to it at point C, 0 < 0 ( 3t, XC = 
zc (11) is the largest root of the cubic equation (2.1). From (3.4) we see, in particular, 
that 1, > 1s and, consequently, the interval d,, is not empty for sufficiently small ti 
For points with H (A) E dlz , under motion in Glz, H receives an increment b tl = 
-6 111~ -!- 0 (s”*)] < 0 at every turn as long as H = 0 (S), A, < X < k . Therefore, 
the point is immersed in GH, leaves the separatrix and cannot go onto it once again. 
For proving the theorem it is essential that the point should notapproach”too” close to C. 
Points not satisfying this condition belong to segments (3.3) and are excluded from con- 
sideration. 

Note. The proof of Assertion I also is based on the property 1~ > 1%. 

Let + (01, Y 601 E G,, at the initial instant. Then by virtue of Assertion 2 the 
point (s (t), y (i$) intersects ray Cx for the last time for some h = A . 

Definition. We say that the point (a: (t), ZJ (t)) is captured in Glz if it lies in 
G12 for h = h + 1 . Otherwise the point is captured in G,. 

From Theorem 1 it follows that if 6 is sufficiently small, then the points passing 
through interval d,, are captured in &s, whiie those passing through ds are captured 
in Gs. 

4, Ptobrbflfty of capture and ftr computrtfon, FromTheorem 1 it 
follows that a change in the value of H by a small quantity of the order of 6 after the 
last turn can lead to a qualitative change in the character of the motion. Therefore, if 
the initial cooditions are given to within I (6 (( E < f), it is not possible to indicate 
unambiguously in which of the regions Gs, (&s the evolution will take place after the 
intersection with the separatrix. In an asymptotic analysis of the problem (6 -3 0) it is 
appropriate to treat capture by some region or other as an event and to introduce its pro- 
bability. Such an approach was applied in the capture problem for the oscillation of a 
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pendulum perturbed by a small dissipative moment ( l ) p] and in the problem of mo- 
tion over an integral surface having a saddle point [4] (the latter problem is close to 
ours). The corresponding probabilities were computed in these papers. 

The concept of random capture in the Foblem being examined was introduced iu JJlj. 
From the text of Cl] we can realize, although this is not clearly statsd, that the probabi- 
lity of capture in (Y&s is (in terms of the present paper) the ratio of Xl8 - the upper 
bound of the values of II on ray CZ, for which the point is captured in G1% - to HI - 
the upper bound of the values of H on ray CS, for which the point cannot make a com- 
plete turn in G,. The computation of these quantities reduces to a bo~da~-value prob- 
lem. This problem was solved in [l] by a numerical integration of the equations of per- 
turbed motion (1.2). 

Theorem 1 yields analytic estimates for the, quantities H,, and H, 

I ffl, - 6r~2 1 < 0.5k,& / HI - till / < 0.5hyw. (4 11 

If by ref~ing the concept of capture ~obabi~~ in G1s, in~odu~d in [ 13, we define 
the ~ebabi~~ as P = lims,, Hi, I H; (4.2) 
then inequalities (4.1) yield 

p = 1,s I 1, = (I, - I,) 1 I, (4.3) 

Here P = P (A) and formulas (4.3) and (3.4) allow us to compute P if we are given 
A , i e. the value of parameter h, for which the point goes into C, at the last turn. 

Resonance in whose neigh~h~ the motion of a pair of satellites is described by 
~amiltonia~ (1.1) has been considered in [l] and it was shown that capture of the repre- 
sentative point in Gla signifies capture of the satellites into resonance, while capture in 
Gs signifies departure from resonance. The assumption exists that in former times the 
pair Enceladus-Dione of Saturn’s satellites intersected the resonance being examined 
without being captured, i. e, its representative point on the phase plane approached a 
separatrix and departed into es. The probability of this event (capture in Gs) was ob- 
tained in El] by numeri~l inte~ation for hy~~ed~l parameters of the approach to the 
separatrix b p = 0.81. For those same parameters formula (4_ 3) yields p = 1 - P = 
0.82. The agreement is good if we take into consideration that in the problem being 
examined 6’h - 10wa. 

6, Another definition of ths probability. For what follows it is useful 
to define the probability in terms of phase volume. For a Hamiltonian system the phase 
volume - area is preserved, Suppose that a volume AV, occurs in G as h varies on 
the interval (A., A + Ah). let a fragment AVIV,, of this volume be captured in Gla. 
We define the ~obabi~~ of capture in &a as 

R (A) = limAx+ lims+ AV,, f AV, (5.1) 

(Intuitively, here AS, is the imprecision in our knowledge of the instant of approach to 
the separatrix; A?$$ 6 and, therefore, the outer limit is taken over AL) 

*) A similar problem was considered in 3. V. Chirikov’s dissertation “NonliRear Oscilla- 
tions in Near-iterative Systems”, Nov~ibirsk, 1959. 
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Lemma. Definitions (5.1) and (4.2) are equivalent : I? (h) = P (A). 
This can be proved by calculating the flow of the phase volume through the intervals 

dl and drsand b y estimating their closeness to ATi, and AVlz , respectively. Another 
approach is the direct use of (5.1) for calculating the probability. For this we introduce 
S, (h) = mes G, S, (3L) = mes G, (v = 2, 121, where mes G, is area on the phase 
plane. Using incompressibility, we can show that 

Al’, = S, (A + 6%) - S, (A) 

lims-+oAVlz = 4, (A + Ah) - &, (A) 
R -_ limah 

- 
o SE (A + Aln) - Sla (4 = dsml da 

sl (A + Ah) - Si (A) d&i dA 

Using the formulas 

we obtain R = liB f xi, Q. E.D. Formulas (5.2) prove the follo~ng ~iculation 
(which we carry out for v = 1). Let I’, = I’, (cp, X) be the equation of 2,. Then H (rl, 

cp, A) = 0, ar, I ah = - (ai I ak) I Wf I ar) 

6. Plan for an rpproximrre ~onaidarati~n of the, problem. Ifthe 
motion takes place at a distance from the separatrix, we are justified in applying the 
method of averaging along the trajectories of the unperturbed problem [6] for describing 
approximately the variation of the “slow” variable (the function H in the problem under 
analysis). In Sect. 7 we make assertions which allow us to use this fact in a somewhat 
modified form also for solutions intersecting a separatrix, We present below the plan for 
analyzing the problem to which this modification leads. 

In each of the regions G, (v = 1, 2, $2) we consider the equation (the “averaged 
equation”) 

dh i 
dh=IT 9 $&dt (6.1) 

where T is the period in the unperturbed problem and the integral is taken along the 
trajectories of the unperturbed problem N (2, y, h) = h # 0 when h = const. 
Actually, (6.1) defines three different equations depending upon the subdivision region 
selected. When h = 0 (i. e. on the region’s boundaries, namely, the separatrices) we 
set dh I dh = 0, Were the right-hand sides remain continuous (but not differentiable). 

Let (5 (0), ~(0)) E G,; then H (z(O), I, k*) ==.&I > 0. We consider Eq. 
( 6.1) in Gl and its solution h = h1 (h). For some h = A we get 4 (h) = 0. A 
distinctive branching arises at this instant. Using Eq. (6.1) in region Gs with initial 

condition la = 0 for h = A, we obtain the solution h = h, (A) immersed in Gs 
(h, (A) gmwsZ Using (6.1) in G,, with the same initiai condition, we obtain the SO~U- 

tion h = hr, (A) immersed in G,, (hi2 (h) decrease& A typical behavior of h (h) 
is shown in Fig. 3, a. 

1”. If after intersection with the separatrix the evolution takes place in G., (Y = 
2, 12), then the formula 

(6.2) 
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describes the variation of H witb an accuracy of the order of 6 1 In 6 1 for times ofthe 
order of 1 I Q. 

2”. Motion in Grs is realized with probability P (A) = 1,s (A) / 1, (A), while 
in Gs , with probability 1 - P (A). 

These assertions will be justified in Sects. 7 and 8. Thus, the plan reduces to the use 
of the averaged Eq. (6.1) in Gt up to the separatrix, to the calculation of capture pro- 
bability on the separatrix, and to the s~sequent use of (6.1) in G,, and/or Gs. 

This same plan can be set forth differently, by using an adiabatic invariant. In each 
of the regions G, (Y = 1, 2, 12) we consider the function J = J (h, A) , namely, 
the area contained inside the trajectory of the unperturbed problem with H = h at the 
“slow time” instant h. It can be verified 161 that this function is an integral of Ee(6.1) 
considered in that same region. This integral is called an adiabatic invariant. 

Fig. 3 

Then : 
The instant A is determined from the (transcendental) equation J, = J (Ho, I,,) = 

S, (A); it has a single root since J, > S, = S, (A,) = nh, and dS, I’ dh = II > 
n I 2. 

For A < h the motion is determined approximately by the relation J (H, A) = Jo, 
For h > A the motion is described with probability P (A) by the relation J (22, 

A) == A’,, (A); since dS,, I dh = II2 > 0, the trajectory is immersed in G,s.The 
motion is described with probability 1 -P (A) by the relation J(H, A) = ,& (A); 
since dSs I dh = Is >0, the trajectory is immersed in Gs. 

This plan is presented graphically in Fig. 3, b. 
For describing the motion with initial value A = ho # h, we consider the area w = 

W (f, A) contained inside the trajectory with F = f. For h Q J.* this function is intro- 
duced in the whole plane, while for h > A*, in each of the subdivision regions and 
w (P, h) = J (F - F,, hf. Suppose that F = F, and W = W,,= W (F,, h,) have been 
given for h = h, . If W, < S,, then an “automatic capture” is effected, the solution 
does not intersect the separatrix, and the averaging method in the usual form is applica- 
ble. We can use the formula W (F, A) = W, for describing the motion. If W,, > S,, 
the previous plan is applicable with J replaced by W. We do not consider the excep- 
tional case W,, = S, in detail ; the estimates on the accuracy are different here. 

7, Sub#trntlrtion of the rverrging method procedure. betusrecall 
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first of all whatthe averaging method in the usual f~mulation yields in the problem 
being examined. Let the motion start in G, and let H (A,) = H (X (t), 9 (t), A), 

(t = (h - n,) / 6) b e a solution of the exact problem (1.2), while h1 (A,) is a solu- 
tion of Eq. (6.1) in G, with like initial conditions: i$ (h,) = h, (h,) = H,. 

Theorem [6]. For any k, > 0 there exist 6, > 0 and kz > 0, such that 

1 H (A> - hl (k) 1 < kp3 for 6 < 6, as long as IzI (h) > 1cl-1. 
The restriction h, (A) > kl-’ > 0 does not allow us to use tne method close tothe 

separatrix. It was found that in the problem being examined and, in general, in problems 

of similar type, the theorem is valid, permitting the use of the averaging method up to 

the separatrix. 

Theorem 2. Positive constants 6,, kr, k2, depending on Ho, exist such that 

I ff (A) - 4 04 I < k,6 (7.1) 

for 6 ( 6, as long as /zI (X) > k16 . 
Thus,.the averaged equation can be used up to the S-neighborhood of the separanix. 

To prove this we consider the motion of a point in G, along the turns. Suppose that at 

the end of the n-th turn H = H,, h = h,, J = fn7 t =. 6,. The following esti- 

mates are valid (kz are positive constants) as long as the conditions 

H> 6, h, (V > 6 (7.2) 
are fulfilled : 

1’. H, - H,,, > k,-l6 is fulfilled for any n . Therefore, 

H,_, > H, + qka-‘6, n < k, (Ho - Hn) sf 6 (7.3) 

2”. On the n-th turn 

I H - H, I< k$, 1 h - A,, I < k66 
I J - Jn I < kd (1 + 1 In Hn I, 

Gl 
3** J,-- J+.r = 

s 
-g&-p+ 

b-1 

(1 + I In Hn I> (7.4) 

where the last integral is taken along a trajectory of the unperturbed problem H = Hn, 
h = h,; it ‘is identically equal to zero since J is an integral of the averaged equa- 

tion. Estimating the right-hand side of this relation with the aid of (7.4), we obtain 

1 J, - J,_, I< k,62H,-1 

4”, Using (7.5). (7.31, (7.21, we obtain 

lJ?S-- 

(7.5) 

(7.6) 

m-i m-l 

kd2 2 HZ-q < kda ;4] (Hm + qk,‘S)-l <k,6’x 
PO a=ol 

[Hz + i (Hm + qki16) dq] < k,a [ I+ k, In Hm +Hmk;;lg ] < 

0 na 
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k76 
[ 

1 +k,IIl# 
m I 

<Mw + I~nKnl) 

From (‘7.41, (7.6). (7.2) it follows that on the m-th turn 

1 J - Jo I< I J - J, I + 1 J, - J, I< (ke + ks)e (4 + 

I In H, I) < k8J (1 + 1 In fI (V I ) 

Since J (hl (?L), h) = J,, then 

J J (N 04, A) - J (h, (A), A) f < k& (1 -i- 1 In fit (A) I) 

603 

Using this inequality and (7. Z), we obtain 

1 H @) - 4 (V I< kd 

Conditions (7.2) cannot be violated as long as hr (h) > (k, + I)6 = k#, and we 
can guarantee the estimate (7.7) indicated. Analogous assertions are valid in regions 
&;Iz and C, For example, in G,, we have - 

Theorem 2’. Let the constants li > h’ > h, be specified. There exist positive 
constants 6,, klc,,, kll such that the estimate 

is valid for 6 (: 6, as long as h < k , where H (a) is the solution of the exact equa- 
tions, whrle &I2 ’ (A) is the solution of the averaged equation Gvith like initial values: 
hla’ (A’) = H (A<) < -k& 

The nroof is analogous to the Heceding one, except that instead of (7.6) we obtain 
f Jm - JO I< lc,,6 (1 + 1 In H (A’) I) < k,,6 I In 6 f and hence instead of (7.7) 
we arrive at (7.8). 

Corollary. Let Lr be a closed subregion of GI for k = h,, k > h, be a con- 
stant. There exist positive constants a,, k,*, tE,, such that when 6 ( 6,, h < k the 
estimate 

(7.9) 

(h (a) is from (6.2)) is ful~lled for the points captured in G, (Y = 2,lZ) if (z (0), 
y (0)) E U\u, where u c Cr is some “exceptional” set: rues u < k;,& 

To prove this we introduce kis > ki -J- kzl uniformly with respect to (ztz (0), y (0)) E U 
and A’ from some interval. Suppose, for example, that the point is captured in G12. For 
it we denote A, and A, as the values of h such that H (A.) 5;: k&, H (A,) = - k&3. 

If kle is sufficiently large, then A_ < A < A, and 

A+-h_<k,6JIn6~ (7. IO) 

for points passing “not too closely” to C (the latter guarantees the condition (z (01, 
LS (0)) E$ u, where mes u < k& 

For il, gh < A_ estimate (7.9) follows from Theorem 2, H (?L) = 0 (8) and h (;lf = 
0 (b) are fulfilled for A- 6 h d A+ , so that (7.9) is trivial. Theorem 2’ is applicable 

for A+<?+ ’ k 1 II (h) - hd (A) 1 < k,,d 1 In S I, (ba’ (A,) = - I@) 
Using (7.1 O), we obtain 

1 h1a’ (h) - .h (h) I < k,t& I In 6 I 

1 fJ 69 - h (A) 1 < (klo + k,s) 6 I ha I = W l h6 l 
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Q. E, D. This corollary substantiates assertion 1 o of Sect. 6, 

8. Dsffnitfon of the probability from the initial condittoar, 
In (z, y, A)-space we consider a point M (so, yo, h,) for which Ho = H (zs, y,,, 
A*) > 0. Let V be an e-neighborhood of it. In V we pick out a subset VI, of points 
captured in G,,. 

Definition, The expression 

Q (~) = lim,, Ems+ meS VIZ / rnesV @*1) 

where mes V is the volume in (z, y, A) -space, is called the probability of capture of 
point iI4 in G,, , This definition is a formalization of the usual “physical” definition 
of the probability, It is borrowed from 153 with minor modifications. 

Theorem 3. G (M) = p (A), h w ere 
from the equation 8, (h) = J (Ho, a,). 

P (A) is from (4.3) and .A is determined 

This theorem substantiates assertion 2’ of Sect, 6. The proof is obtained by combining 
the results of Sects. 5 and 7. 

9, Influeatrllr of small perturbations, Together with the system defined 
by Hamiltonian (1.3) we consider the proximate system of equations 

X’ = dF’ 1 8~ + X6& g = -dF’ I dx + xSg,, F’ = F + xF, (9.1) 

where F,, a, g2 are smooth and bounded functions of x, y, A; x > 0 is a constant. 
The ~obabili~ ox (~~ of capture of a point iM in region Glz is defined for system 
(9.1) in the same way as in Sect. 8, 

Theorem 4, There exisr x,, > 0, k, > 0, such that when x ( x0 the proba- 
bility Qx (M’) exists and 

1 Qx (M) - Q @f) i -C NIX (9.2) 
The proof is cumbersome ; it is based on the fact that for system (9.1) we can argue 

as in Sects. 3, 7, 8 and obtain for QI formulas of the type of Theorem 3. Estimates re- 
latlve to these formulas lead to (9.2). By virtue of Theorem 4 the probability changes 
but little under the small perturbations which are always discarded when deriving equa- 
tions of type (3.2) (see [I, 21). 

10, Pendulum problem, J..et us now consider the pendulum problem (0. I). 
We assume L = 66, p > 0 is a constant, 0 = 0 (I+, 0’ = do/& > 0, h’ = 6, 
0 < 6 < 1, We write the pendulum’s equation of motion 

w* + w2 sin 0 = -Sfi (10.1) 

It can be shown that the pendulum, originally moving in the direct rotation, is retarded 
and with probability 

is captured into oscillations. Here w’ = o’ (A), where h is the instant of approach 
to the separatrix. Equation (10.1) was applied in n] for the analysis of the evolution of 
the orbits of Saturn’s resonant satellites. The capture probability value P = 0.04 was 
obtained in El& using such a model, for the pair of satellites Mimas-Tethys by a numer- 
ical integration of (10.1). For those same problem parameters formula (10.2) yields 
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P = 0.044. 
A plan, analogous to that presented in Sect. 6, is applicable for describing the evolu- 

tion. We introduce the unperturbed problem’s Hamiltonian H= (O’%)- 2 02 cos2 (6 / 2); 
H > 0 for rotations and H < 0 for oscillations. For H > 0 we introduce 

2x 

J (H, h) = \ IO’ 1 d0 = 4 E (z), z = v2H2; 402 
0 

where E (z) is the complete elliptic integral of the second kind with modulus z. By vir- 

tue of the averaged equation, dJ I dh = - 2 nfi in the region of direct rotation, and 

for h, d h d A the evolution is described by the formula J (H, h) = J (H,, h,) - 

2 np (h - ho). The instant A is determined from the condition J (0, A) = S (A) I% 

where S (h) = 16 o (h) is the area of the oscillatory region on a segment of length 2 n. 

Therefore, 8 o (A) + 2 nS (A - h,) = J (H,, b). 

Shift into the reverse rotation takes place with probability 1 - P (A). If 1 - P X 

(A) > 0, this evolution is determined by the formula J (H, h)=2 n@ (h - A) + 8 o (A). 
Capture in the oscillatory region takes place with probability P (A) . Here we introduce 

J (H, 1) = ‘$ I9’( d-3 = 16 o [E (z) - (1 - 22) K (z)] 

where 
z= 61 +H/2m2 (H<O) 

K (4 and E (z) are the complete elliptic integrals of the first and second kind, respec- 

tively, with modulus z. The formula J (H, h) = S (A) = 16 o (A) describes the mo- 

tion in the oscillatory region. 

The author thanks M. L. Lidov for posing the problem and for attention to the work. 
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